12,500 research outputs found

    Can rising housing prices explain China’s high household saving rate?

    Get PDF
    China’s average household saving rate is one of the highest in the world. One popular view attributes the high saving rate to fast rising housing prices and other costs of living in China. This article uses simple economic logic to show that rising housing prices and living costs per se cannot explain China’s high household saving rate. Although borrowing constraints and demographic changes can help translate housing prices to the aggregate saving rate, quantitative simulations using Chinese data on household income, housing prices, and demographics indicate that rising mortgage costs contribute at most 5 percentage points to the Chinese aggregate household saving rate, given the down-payment structure of China’s mortgage markets.Economic conditions - China ; Housing - Prices ; Consumer behavior ; China

    Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering

    Get PDF
    Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and is available on CRAN.Comment: The original title dated back to May 2015 is "Bootstrap Tests on High Dimensional Covariance Matrices with Applications to Understanding Gene Clustering

    Simulation-Based Hypothesis Testing of High Dimensional Means Under Covariance Heterogeneity

    Get PDF
    In this paper, we study the problem of testing the mean vectors of high dimensional data in both one-sample and two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the unknown covariance matrices, the proposed tests allow general covariance structures of the data and therefore enjoy wide scope of applicability in practice. To enhance powers of the tests against sparse alternatives, we further propose two-step procedures with a preliminary feature screening step. Theoretical properties of the proposed tests are investigated. Through extensive numerical experiments on synthetic datasets and an human acute lymphoblastic leukemia gene expression dataset, we illustrate the performance of the new tests and how they may provide assistance on detecting disease-associated gene-sets. The proposed methods have been implemented in an R-package HDtest and are available on CRAN.Comment: 34 pages, 10 figures; Accepted for biometric

    Matrix Completion via Max-Norm Constrained Optimization

    Get PDF
    Matrix completion has been well studied under the uniform sampling model and the trace-norm regularized methods perform well both theoretically and numerically in such a setting. However, the uniform sampling model is unrealistic for a range of applications and the standard trace-norm relaxation can behave very poorly when the underlying sampling scheme is non-uniform. In this paper we propose and analyze a max-norm constrained empirical risk minimization method for noisy matrix completion under a general sampling model. The optimal rate of convergence is established under the Frobenius norm loss in the context of approximately low-rank matrix reconstruction. It is shown that the max-norm constrained method is minimax rate-optimal and yields a unified and robust approximate recovery guarantee, with respect to the sampling distributions. The computational effectiveness of this method is also discussed, based on first-order algorithms for solving convex optimizations involving max-norm regularization.Comment: 33 page

    A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

    Get PDF
    We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the general sampling model. The minimax upper and lower bounds together yield the optimal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical performance are also discussed.Comment: 33 pages, 3 figure
    corecore